
910	 volume 124 | number 7 | July 2016  •  Environmental Health Perspectives

Research A Section 508–conformant HTML version of this article  
is available at http://dx.doi.org/10.1289/ehp.1409029. 

Introduction
A major focus in public health has been to 
understand and limit potential adverse health 
effects of chemicals. However, despite an 
expectation of safety by the general public, 
there are tens of thousands of chemicals in 
commerce that have been evaluated on the 
basis of closely related analogs but that lack 
chemical-specific toxicity information (Judson 
et al. 2009). This lack of toxicity information 
has led to national and international efforts to 
use in vitro high-throughput screening (HTS) 
methods to collect data on biochemical and 
cellular responses following chemical treat-
ment in vitro (Kavlock et al. 2009; Attene-
Ramos et al. 2013). A key element of toxicity 
testing in the 21st century [National Research 
Council Committee on Toxicity Testing and 
Assessment of Environmental Agents (NRC) 
2007; Boekelheide and Andersen 2010] 
is conceptually organizing HTS data into 
pathways that, when sufficiently perturbed, 
lead to adverse outcomes. One challenge 
associated with this new vision has been the 
assessment of “tipping points” beyond which 
pathway perturbations invoke a lasting change 
that could ultimately lead to an adverse effect.

The present study is part of the U.S. 
Environmental Protection Agency’s (EPA’s) 
ToxCast™ project, which aims to develop 
in vitro screens to identify potentially hazardous 
substances for further targeted testing (Kavlock 
et al. 2012). We used high-content imaging 
(HCI) (Giuliano et al. 2006), which applies 
automated image analysis techniques to capture 
multiple cytological features using fluorescent 
labels, to measure the concentration-dependent 
dynamic changes in the state of HepG2 cells. 
Although they are not fully metabolically 
capable, HepG2 cells can undergo continuous 
proliferation in culture and have a demon-
strated capacity to predict hepatotoxicity of 
pharmaceutical compounds with good sensi-
tivity and specificity (O’Brien et  al. 2006; 
Abraham et al. 2008). We used computational 
tools to deconvolute HCI responses into 
cell-state trajectories and to analyze them for 
their propensity to recover to normal (basal) 
conditions over the test period. The critical 
concentrations associated with nonrecoverable 
cellular trajectories were determined, where 
possible, and compiled into a novel chemical 
classification scheme. We discuss how these 
“tipping points” in the function of cellular 

systems might be used to define a point of 
departure for risk-based prioritization of 
environmental chemicals.

Methods

Cell Culture

HepG2 cells were obtained from American 
Type Culture Collection (ATCC) and used 
before passage 20. Cells were maintained 
and expanded in complete media [10% fetal 
bovine serum (FBS) in Minimum Essential 
Medium with Earle’s Balanced Salt Solution 
(MEM/EBSS) supplemented with peni-
cillin/streptomycin, L-glutamine, and non-
essential amino acids]. Cell culture reagents 
were obtained from VWR International. 
HepG2 cells were harvested by trypsinization 
and plated at different densities in 25 μL of 
culture medium, depending on incubation 
time, in clear-bottom, 384-well microplates 
(Falcon #3962) that were coated with rat tail 
collagen I. The cells were incubated overnight 
to allow attachment and spreading.

Chemical Treatments
HepG2 cells were treated with 967 chemicals 
from ToxCast™ Phase I and Phase II libraries 
(U.S. EPA 2014). Cells were treated with 
dimethyl sulfoxide (DMSO) as a solvent 
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Background: High-content imaging (HCI) allows simultaneous measurement of multiple cellular 
phenotypic changes and is an important tool for evaluating the biological activity of chemicals.

Objectives: Our goal was to analyze dynamic cellular changes using HCI to identify the “tipping 
point” at which the cells did not show recovery towards a normal phenotypic state.

Methods: HCI was used to evaluate the effects of 967 chemicals (in concentrations ranging from 
0.4 to 200 μM) on HepG2 cells over a 72-hr exposure period. The HCI end points included p53, 
c-Jun, histone H2A.x, α-tubulin, histone H3, alpha tubulin, mitochondrial membrane potential, 
mitochondrial mass, cell cycle arrest, nuclear size, and cell number. A computational model was 
developed to interpret HCI responses as cell-state trajectories.

Results: Analysis of cell-state trajectories showed that 336 chemicals produced tipping points 
and that HepG2 cells were resilient to the effects of 334 chemicals up to the highest concentration 
(200 μM) and duration (72 hr) tested. Tipping points were identified as concentration-dependent 
transitions in system recovery, and the corresponding critical concentrations were generally between 
5 and 15 times (25th and 75th percentiles, respectively) lower than the concentration that produced 
any significant effect on HepG2 cells. The remaining 297 chemicals require more data before they 
can be placed in either of these categories.
Conclusions: These findings show the utility of HCI data for reconstructing cell state trajectories 
and provide insight into the adaptation and resilience of in vitro cellular systems based on 
tipping points. Cellular tipping points could be used to define a point of departure for risk-based 
prioritization of environmental chemicals.
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control at a final concentration of 0.5% v/v or 
with compounds in DMSO with a resulting 
final DMSO concentration of 0.5%  v/v. 
Compound treatment was done at concentra-
tions of 0.39, 0.78, 1.56, 3.12, 6.24, 12.5, 
25, 50, 100, and 200 μM in duplicate on 
each plate. Cells were treated with ToxCast™ 
Phase I compounds for 1, 24, and 72  hr 
and ToxCast™ Phase II compounds for 24 
and 72 hr only. Carbonyl cyanide m-chloro
phenylhydrazone (CCCP) and taxol were 
used as positive controls for mitochondrial 
function and cytoskeletal stability, respec-
tively; DMSO served as the negative control 
for this experiment.

Cell Staining and Fluorochroming
Cells were fixed by the direct addition of 50 μL 
formaldehyde in Hank’s Balanced Salt Solution 
(HBSS) to a final concentration of 3.7%. After 
incubation in the fixation medium for 30 min 
at room temperature (293–298 K), cells were 
rinsed twice with HBSS and treated with 
cell permeabilization buffer (16 μL of 0.5% 
Triton X-100) for 10 min at room temperature 
(293–298 K) before labeling. For mitochon-
drial membrane potential and mitochondrial 
measurements, pre-fixed cells were incubated 
with 50 μL of MitoTracker® Red CMXRos 
(Invitrogen) at a concentration of 250 nM for 
30 min before fixation. In the remaining cases, 
post-fixed cells were labeled by incubation with 
a multiplexed mixture of primary antibodies 
in HBSS for 60 min at room temperature 
(293–298 K) to detect immunoreactivity of 
c-Jun (1:500), phospho-histone H3 (1:100), 
phospho-histone H2A.x (1:200), p53 (1:400), 
α-tubulin (1:200) and Hoechst 33342 
(2 μg/mL). Cells were labeled for multiplexed 
imaging on two separate plates: a) Hoechst 
33342, MitoTracker® Red, phospho-histone 
H3, and α-tubulin, and b) Hoechst 33342, 
phospho-histone H2A.x, and c-Jun. A final 
rinse with HBSS (50 μL) was performed before 
analysis. The primary and secondary antibodies 
for the proteins were phospho-histone H3 
(rabbit anti-phospho-histone H3 and FITC-
donkey anti-rabbit IgG), phospho-histone 
H2A.x (mouse anti-phospho-histone H2A.x 
and FITC-donkey anti-mouse IgG), c-Jun 
(rabbit anti-phospho-c-Jun and Cy3-donkey 
anti-rabbit IgG), p53 (sheep anti-p53 and 
Cy5-donkey anti-sheep IgG), α-tubulin (mouse 
anti-α-tubulin and Cy5-donkey anti-mouse 
IgG). These antibodies are available as the 
CellCiphr HepG2 assay kit (Millipore).

Image Acquisition, Analysis and 
Feature Extraction
Digital images of each well were captured 
using a Cellomics ArrayScan VTI (Thermo 
Scientific Cellomics™) (0.8 NA objective, 
0.63× optical coupler, and XF-93 filter set) at 
20× magnification. The images were acquired 

using the autofocus feature of the ArrayScan 
instrument, which entails the following 
steps. First, the camera focuses on channel 
1 (Hoechst 33342), where nuclei are identi-
fied. Second, a Z offset of 1 μm is used for 
capturing mitochondria (MitoTracker® Red). 
Third, a Z offset of –2 μm is used for capturing 
the cytoskeleton (tubulin). Six digital images 
were captured in each well and analyzed using 
BioApplication software, which was provided 
with the instrument. All images were analyzed 
using the Compartmental Analysis and Cell 
Cycle Analysis BioApplication software from 
Cellomics™. The Cell Cycle BioApplication 
software (Cellomics™ 2007a) used the nuclear 
stain to identify valid cells, to measure nuclear 
diameter, and to quantify DNA content. These 
features were used to calculate the average 
nuclear size, cell cycle arrest (ratio of 2N/4N), 
and cell number. The Compartmental Analysis 
BioApplication software module (Cellomics™ 
2007b) was used to measure the average cell 
intensities for c-Jun phosphorylation, p53 
protein activation, phospho-histone H2A.x 
activation, mitochondria, and α-tubulin. The 
average intensity of mitochondria was used 
to define mitochondrial membrane potential, 
and the total intensity was used to define mito-
chondrial mass. Data from cellular features 
measured in the nucleus were excluded for 
wells where there was a significant decrease in 
nuclear size and brightness. Detailed documen-
tation about the algorithms and parameters 
used by the BioApplication software for this 
analysis are available upon request. Cellular 
features were aggregated at the well level to 
quantify the following end points: p53 activa-
tion, c-Jun activation (stress kinase), phospho-
histone H2A.x (DNA damage produced by 
oxidative stress), phospho-histone H3 (mitotic 
arrest), α-tubulin (microtubules), mitochon-
drial membrane potential, mitochondrial mass, 
cell cycle arrest, nuclear size, and cell number. 
Table S1 summarizes the relationships between 
cellular end points, stains/fluorochromes, 
the BioApplication software, and the specific 
algorithms used for extracting cell-level 
features. The raw image data (captured by 
the ArrayScan VTI) and well-level data for 
all chemical treatment concentrations, 
time points, and stains/fluorochromes were 
stored in a freely available custom database 
(https://www.epa.gov/chemical-research/
downloadable-computational-toxicology-data). 
Representative HCI images captured 1, 24, 
and 72 hr after treatment with CCCP, taxol, 
butachlor, fludioxonil, and fluazinam are 
shown in Figures S1(a), S1(b), S1(c), S1(d), 
and S1(e), respectively.

Data Processing and Normalization
Concentration response data from the HCI 
experiment were smoothed and normalized for 
every chemical, end point, and time. The raw 

concentration responses were smoothed using 
a Hamming window (Blackman and Tukey 
1958) of length 7. The raw concentration-
dependent responses for the reference chemi-
cals, CCCP and taxol, are shown in Figures 
S2(a) and S2(b), respectively. The raw time-
dependent responses for CCCP and taxol are 
shown in Figures S2(c) and S2(d), respec-
tively. Additional examples of raw smoothed 
concentration- and time-dependent responses 
for fludioxonil, fluazinam, and butachlor are 
shown in Figure S3. Next, the smoothed data 
(r) for end points measured on each plate 
were normalized to the median response (r*) 
to calculate perturbations as the logarithm 
(base 2) of fold change values. The normalized 
changes (x = log2 r/r*) were also standardized 
(z = (x – x*)/σx) to evaluate the importance 
of perturbations (where σx is the standard 
deviation of x). The lowest effect concentration 
(LEC) for each chemical and end point was 
calculated as the concentration that produced a 
fold change perturbation at least one standard 
deviation (i.e., σx = 1) above or below the 
median value. An absolute perturbation > one 
standard deviation was called a “hit” (i.e., |σx| 
> 1). The LEC was estimated by numerically 
solving for: |z| = 1 (the minimum value was 
selected if there were multiple solutions). The 
efficacy was measured as maximum positive or 
negative value of x.

System Trajectory and Dynamics
Each concentration and duration of chemical 
treatment produced a system perturbation 
(X), which was represented by the vector: 
X = (xsk, xos, xp53, xmt, xmm, xmmp, xma, xcca, xns, 
xcn) (where the subscripts sk, os, p53, mt, mm, 
mmp, ma, cca, ns, and cn denote stress kinase, 
oxidative stress, p53, microtubules, mitochon-
drial mass, mitochondrial membrane potential, 
mitotic arrest, cell cycle arrest, nuclear size, and 
cell number, respectively). The vector perturba-
tion was also summarized by a scalar magni-
tude (X), which was calculated as the Euclidean 
norm [X  =  |X|  =  (∑xi

2)1/2]. We defined 
a trajectory (T) as the dynamic response of 
the system to a chemical concentration as a 
temporal sequence of scalar perturbations, 
T = (X0, X1, X2, .., X t,.., Xn). The scalar system 
perturbation was assumed to be continuous 
across concentration and time [X = f(c,t)] and 
was estimated from experimental data [we 
assumed that the system was unperturbed at 
t = 0, i.e., f(c,0) = 0]. The velocity of the system 
(V) was defined as the rate of change of the 
scalar system perturbation (V = ∂X/∂t) and was 
calculated as the slope of X with respect to time 
t. At a given time point, normal, recovering, 
and nonrecovering trajectories are defined 
by: V = 0, V < 0 and V > 0, respectively. The 
concepts of system trajectory, velocity, and 
recovery are illustrated in Figures 1A, B, and 
C, respectively.



Shah et al.

912	 volume 124 | number 7 | July 2016  •  Environmental Health Perspectives

Quantifying System Recovery 
Across Concentrations
We assumed that V formed a two-dimensional 
surface from which the recovery of the 
system could be analyzed at any time (t) 
across concentrations (c) (Figure  1D). 
Consider a hypothetical parabolic relation-
ship between V and c at a fixed time (shown 
in Figure  1E). At low concentrations, V 
is positive, which suggests that the system 
perturbation is increasing. As the concentra-
tion increases, V decreases until it reaches a 
minimum and then begins to increase. These 
trends can be summarized by the rate of 
change of V with respect to concentration 
(∂cV = ∂V/∂c = ∂2X/∂t∂c), which can have 
three possible values: a) ∂cV < 0 for concentra-
tions that produce recovery, b) ∂cV > 0 for 
concentrations that do not produce recovery, 
and c) ∂cV = 0 for the concentration corre-
sponding to the critical point for system 
recovery. For each chemical, the empirical 
relationship between ∂cV and different treat-
ment concentrations at 72 hr was estimated by 
B-spline interpolation and numerically solved 
for ∂cV = 0 to calculate the critical concen-
tration (denoted as Ccr). After resampling 50 
subsets of the concentration–velocity pairs for 
each chemical, ∂cV was fitted and solved for 
∂cV = 0 to construct a distribution, which was 
used to estimate the 95% confidence interval 
for Ccr. We also recorded the trends in ∂cV as 

a function of concentration and the frequency 
with which the resampled subsets produced 
critical points (i.e., parabolic trends in ∂cV 
with maxima) or produced recovery (i.e., 
parabolic trends in ∂cV with minima).

Data Analysis Software
The data processing, storage, analysis, and 
visualization were performed using the freely 
available Python programming language 
(Python 2014) and associated open-source 
libraries. The software is freely available from 
the authors upon request.

Results

General Characteristics of Cellular 
Effects

The concentration–response profiles of 967 
chemicals were analyzed across the 10 HCI 
end points and three time points to identify 
hits. Almost half of the chemicals (43.7% 
or 432/967) produced a hit for at least 1 of 
the 10 end points by 72 hr. Of the chemicals 
tested, 13.7% (132/967) changed mitochon-
drial membrane potential, 15.2% (147/967) 
altered mitochondrial mass, 22.7% (220/967) 
invoked oxidative stress, 9.4% (91/967) altered 
microtubules, 14.1% (137/967) perturbed 
stress kinase, 27.1% (262/967) altered p53 
distribution, 17.3% (167/967) produced cell 
cycle arrest, 26.9% (260/967) invoked mitotic 

arrest, 7.7% (74/967) changed nuclear size, 
and 32.2% (311/967) decreased cell number. 
With regard to time, altered mitochondrial 
membrane potential (29/308) and p53 activity 
(14/308) were the two most frequent perturba-
tions at 1 hr [only Phase I compounds (U.S. 
EPA 2014) were tested at 1 hr]; perturba-
tions in p53 activity (168/967), mitotic arrest 
(157/967), and cell loss (155/967) were the 
most frequently observed effects at 24 hr. 
Finally, decrease in cell number (303/967), 
mitotic arrest (249/967), and p53 activity 
(228/967) were the most frequently observed 
effects at 72 hr. The LECs for all 967 chemi-
cals across the 10 end points are provided as 
supplemental material in Excel Table S1.

Cellular Perturbations
Interpreting the results of the HCI experi-
ment proved to be a complex problem because 
nearly half of the chemicals produced hits 
across multiple end points at different times. 
The dynamic perturbations produced by a 
representative subset of chemicals are shown 
in Figure 2 (data for all chemicals are provided 
as supplemental material in Excel Table S2). 
Each row of heat maps displays the perturba-
tions produced by increasing concentrations 
(only 0.39-, 1.56-, 6.25-, 25-, and 100-μM 
treatments are shown) of six chemicals: 
Figure 2A, octanoic acid; Figure 2B, dimethyl 
terephthalate; Figure 2C, chlorpyrifos-methyl; 

Figure 1. Hypothetical dynamic system perturbations as trajectories and calculation of tipping points. (A) The green curve depicts a hypothetical trajectory across 
observations at time t (Xt) shown on the basis of two endpoints (xi and xj). (B) The perturbation velocity (V) is calculated as the derivative of the scalar perturba-
tion (|X|) with respect to time (shown in green). (C) Three different types of trajectories are shown using |X|: trajectories that describe the normal behavior of the 
system (shown in green); adaptive trajectories, which include some perturbation of the system state followed by recovery (shown in orange); and adverse trajec-
tories that show initial adaptive responses followed by lack of recovery at later times (shown in red). (D) The relationship between the velocity, concentration, 
and time is given by a continuous surface, V = f(c,t). (E) The rate of change of velocity with respect to concentration is given by ∂cV = ∂V/∂c = ∂2X/∂t∂c. (F) Solving 
∂cV = 0 gives the critical concentration, Ccr.
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Figure 2. Concentration and time-dependent perturbations produced by chemicals. From top to bottom, each row of heat maps shows the perturbations produced 
by increasing concentrations of (A) octanoic acid, (B) dimethyl terephthalate, (C) chlorpyrifos-methyl, (D) butachlor, (E) dicofol, and (F) oxadiazon. Each heat 
map shows the end points (columns), time in hours (rows), and perturbations (colors) produced by each concentration (title). The end points include p53 activity, 
stress kinase (SK), oxidative stress (OS), microtubules (Mt), mitochondrial mass (MM), mitochondrial membrane potential (MMP), mitotic arrest (MA), cell cycle 
arrest (CCA), nuclear size (NS), and cell number (CN). The colors signify no effect (yellow), increase (red), and decrease (blue), and the magnitude of the changes 
is indicated by the color bar in the lower right corner.
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Figure 2D, butachlor; Figure 2E, dicofol; and 
Figure 2F, oxadiazon. Each heat map shows 
perturbations (colors), times (rows) and end 
points (columns). For example, the row of 
heat maps in Figure 2A shows the perturba-
tions produced by octanoic acid, which is 
widely used in perfumes and disinfectants. 
Treating HepG2 cells with 0.39 μM octanoic 
acid increased p53 nuclear localization 
(3-fold) and stress kinase activity (2-fold) at 
24 hr. By 72 hr, p53 activity recovered to 
nearly baseline levels, but stress kinase activity 
remained elevated (1.4-fold). At a higher treat-
ment concentration, 1.56 μM, octanoic acid 
decreased mitochondrial membrane poten-
tial (0.2-fold) at 24 hr, but mitochondrial 
membrane potential recovered to background 
levels by 72 hr. Because octanoic acid is a 
medium-chain fatty acid, we speculate that its 
effects on oxidative stress and mitochondrial 
function may be the result of an increase in 
fatty acid metabolism (Gyamfi et al. 2012).

The next row of heat maps (Figure 2B) 
shows the dynamic effects of dimethyl 
terephthalate (DMT), which is used in the 
production of polyesters. DMT produced a 
time-dependent increase (1.5-fold at 24 hr and 
2.5-fold at 72 hr) in mitochondrial membrane 
potential and a minor decrease (0.6-fold at 
24 hr and 0.7-fold at 72 hr) in nuclear size at 
0.39 μM. At a treatment concentration of 100 
μM, DMT caused a decrease in mitochondrial 
membrane potential (0.9-fold at 24 hr and 
0.3-fold at 72 hr). The dual effects of DMT on 
MMP, increasing at 0.39 μM but decreasing 
at 100 μM, could be explained by transient 
mitochondrial hyperpolarization preceding 
apoptosis (Sánchez-Alcázar et al. 2000). The 
proportion of cells undergoing apoptosis 
was small, however, as there was no substan-
tial decrease in cell number. As such, DMT 
exposure alters mitochondrial membrane 
potential with hyperpolarization at low 
concentrations and concentration-dependent 
transition to depolarization at higher concen-
trations. The complex mechanisms underlying 
such a dose-dependent transition were difficult 
to interpret using these HCI data alone.

The organophosphate  insect ic ide 
chlorpyrifos-methyl (Figure  2C) caused 
microtubule disruption (0.2-fold change) at 
1 hr after 0.39-μM treatments, and a decrease 
(0.7-fold) in cell number was observed after 
72  hr for a 200-μM treatment (data not 
shown). Low concentrations of chlorpyrifos, 
which is structurally related to chlorpyrifos-
methyl, in the 1-10 μM range, are known to 
disrupt the cytoskeleton in neurons (Flaskos 
et al. 2011). Chlorpyrifos is a known acetyl-
cholinesterase inhibitor, but the relevance 
to cytoskeletal disruption is unclear. Unlike 
octanoic acid, DMT, and chlorpyrifos-methyl, 
butachlor (Figure  2D) produced concen-
tration- and time-dependent perturbations 

across multiple end points. At a treatment 
concentration of 0.39  μM, butachlor 
increased p53 activity at 1 hr (1.5-fold) and 
24 hr (2.5-fold), but p53 activity recovered 
to background levels by 72 hr. This temporal 
trend of early p53 activation followed by later 
recovery was observed for increasing butachlor 
concentrations ≤  6.25  μM. This recovery 
was not evident for butachlor concentra-
tions > 6.25 μM; hence, the p53 response 
was more persistent at higher concentrations. 
The temporal trends in mitochondrial mass 
tracked with p53 activity for this compound. 
Butachlor decreased cell number beyond 24 hr 
at concentrations > 100 μM. This widely used 
herbicide has been shown to induce DNA 
damage and mitochondrial dysfunction in 
peripheral blood mononuclear (PBMN) cells 
(Dwivedi et al. 2012).

Dicofol, an organochlorine pesticide, 
invoked concentration-dependent perturba-
tions in mitochondrial membrane potential, 
p53 activity, and stress kinase at 1 and 24 hr. 
At 24 and 72 hr, perturbations were observed 
in mitochondrial mass, cell cycle arrest, 
nuclear size, and cell number (Figure 2E). 
Oxadiazon (bensulide), another organophos-
phate herbicide, also produced complex time- 
and concentration-dependent changes across 
all end points (Figure 2F).

Cell-State Trajectories
We used the concept of a system trajectory 
to analyze the concentration- and time-
dependent stress responses produced by each 
chemical. A trajectory describes the dynamic 
changes in the state of HepG2 cells in 
response to chemical exposure. To interpret 
the HCI data in terms of cell-state trajec-
tories, we first assumed that the state of the 
HepG2 system could be defined by oxidative 
stress, stress kinase activity, mitochondrial 
function, cytoskeletal stability, cell cycle 
progression, and cell number (all of which 
were measured by HCI). Next, we assumed 
that the HCI data at each time point captured 
a snapshot of the state of the HepG2 system 
as it followed a chemical-induced trajectory. 
The heat maps in Figure 2A, for example, 
visualize trajectories for different treatment 
concentrations of octanoic acid. The rows in 
each heat map (from bottom to top) corre-
spond to discrete snapshots of the system 
perturbation at successive time points (0, 1, 
24, and 72 hr), and the columns in each heat 
map show the system state based on 10 HCI 
end points. We assumed that the system was 
initially in a “ground state” that defined the 
normal pattern; thus, by this definition, there 
were no perturbations at t = 0 hr.

A comparison of the trajectories produced 
by different chemicals (Figure 2) revealed 
qualitative differences across concentrations 
and time points. For example, the trajectories 

produced by 0.39 μM and 1.56 μM octanoic 
acid show transitory perturbations in p53 and 
stress kinase activities at low concentrations, 
but not at high concentrations (Figure 2A). In 
contrast, butachlor produced clearly different 
trajectories in temporal response profiles at 
concentrations ≤ 6.25 μM versus > 6.25 μM 
(Figure 2D). To enable quantitative analysis 
of trajectories in terms of both chemicals and 
concentrations, we developed an aggregate 
measure of overall system perturbation. The 
resulting perturbation vector (denoted as X

→
) 

describes the changes in each end point at a 
given time, and the scalar magnitude of X

→
 

(denoted as X) measures the overall perturba-
tion of the system by combining the contri-
butions of individual end points. When the 
system is in the ground state, then scalar 
perturbation is essentially zero (X = 0), but as 
the cellular end points change in response to 
chemical treatment, the scalar perturbation 
increases (X > 0).

Trajectories and System Recovery
The scalar perturbations for the trajectories 
were calculated for the 967 chemicals and 
10 treatment concentrations to investigate 
concentration- and time-dependent trends. 
The trends for 16 representative chemicals 
(captan, dicofol, butachlor, dimethyl tere-
phthalate, sodium L-ascorbate, octanoic acid, 
chlorpyrifos-methyl, oxadiazon, pioglitazone, 
farglitazar, troglitazone, thiram, fludioxonil, 
mercuric chloride, fluazinam, and tetrame-
thrin) are shown in Figure 3. The ordinate 
and abscissa of each graph in Figure 3 show 
the scalar perturbation (X) and treatment 
duration (hours), respectively, for each of 
the 16 chemicals. The treatment concentra-
tions for each chemical are visualized as colors 
from low (blue) to high (red). For example, 
trajectories elicited by butachlor treatments 
showed two different temporal trends in X. 
First, butachlor treatments with concentra-
tions <  25  μM produced an early (1 and 
24 hr) increase in X that was followed by a 
later decrease (72 hr). Second, trajectories 
elicited by butachlor treatments ≥ 25 μM 
showed only an increase in X with time. 
We interpret these temporal trends as the 
integrated effect of chemical-induced stress, 
which caused X to deviate from the ground 
state, and adaptive cellular processes, which 
enabled the system to recover to the ground 
state [see Figure S1(c)]. Thus, butachlor treat-
ments < 25 μM induced stress that dissipated 
with time because adaptive processes were 
activated in HepG2 cells that enabled system 
recovery. In contrast, butachlor treatments 
≥ 25 μM showed a monotonic increase with 
time, suggesting that these higher concentra-
tions overwhelmed the adaptive processes in 
HepG2 cells, and consequently, the system 
could not recover to its ground state.
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Adaptive recovery trends were also 
observed for octanoic acid, captan, and dicofol 
(for brevity, the results for the other chemicals 
are not shown here, but they are available as 
supplemental material in Excel Table S3). The 
dynamic capacity of HepG2 cells to recover 
varied by chemical and by concentration, as 
illustrated by the cellular response to butachlor. 
Octanoic acid, however, produced smaller 
perturbations than butachlor, and all trajecto-
ries implied system recovery. Of the 16 repre-
sentative chemicals shown in Figure 3, partial 

or complete recovery trajectories were evident 
for some compounds. The two thiazolidin-
ediones (pioglitazone and troglitazone) also 
displayed similar trends, but it was difficult to 
compare the differences quantitatively.

System Tipping Points
Visual inspection was useful for comparing 
the trends produced by different chemicals but 
not for quantifying concentration-dependent 
differences in perturbation and recovery. To 
further analyze the trends for each chemical, 

the rate of change of the scalar perturbation 
was calculated for the trajectories. The rate of 
change of the scalar perturbation across time 
(denoted as V = ∂X/∂t) measures the “velocity” 
of the system perturbation at any given 
point in the trajectory (described in detail in 
“Methods”). The velocity is negative (V < 0) 
when the system is on a trajectory that is 
recovering to the ground state. If the velocity 
is positive (V > 0), then the system is on a 
trajectory that is not recovering. The system 
velocity for the trajectories was thus calculated 

Figure 3. Magnitude of perturbations for trajectories produced by fixed treatment concentrations of different chemicals. Each graph shows scalar perturbations 
(y-axis) over time (x-axis) for multiple doses of a chemical. The colors signify treatment concentrations ranging from low (blue) to high (red).
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using data for X at 24 and 72 hr produced 
by all 967 chemicals and 10 treatment 
concentrations (results not shown). Trends 
in system velocity summarize the behavior of 
system trajectories and reveal concentration-
dependent transitions that define the “tipping 
points” for recovery of the HepG2 cellular 
system. We hypothesized the broader exis-
tence of such tipping points after studying 
the trajectories of chemicals such as captan, 
dicofol, and butachlor.

To mathematically identify the tipping 
points of the HepG2 system using trajectories, 
we analyzed the relationship between pertur-
bation velocity (V) and concentration (c). We 
used the rate of change of V with respect to 
concentration (denoted as, ∂cV) to identify the 
concentration threshold for system recovery 
(see “Methods”). Like velocity, ∂cV can 
have three possible values: a) ∂cV < 0 indi-
cates concentrations that produce recovery, 
b) ∂cV > 0 indicates concentrations that do 
not produce recovery, and c) ∂cV = 0 signi-
fies the critical concentration (denoted as Ccr) 
and corresponds to the tipping point of the 
system. In this study, ∂cV and Ccr were calcu-
lated for 967 chemicals using data obtained at 
24 and 72 hr. We also conducted an uncer-
tainty analysis for each chemical to evaluate 
confidence in trajectories and to estimate the 
variability in Ccr caused by experimental noise 
(additional details are provided in “Methods”).

The scalar perturbation (X), the velocity 
(V), and the derivative of velocity with respect 
to concentration (∂cV) for select chemicals 
at 72 hr are shown in Figure 4. Two main 
concentration-dependent trends were used to 
determine the resilience of the HepG2 system 
to each chemical treatment. First, a subset of 
chemicals produced an overall decrease in ∂cV 
with increasing concentrations. This trend in 
∂cV implied a recovering trajectory as invoked 
by, for example, DMT, sodium L-ascorbate, 
octanoic acid, chlorpyrifos-methyl, fludiox-
onil, and tetramethrin. Second, a subset of 
chemicals elicited an overall increase in ∂cV 
with increasing treatment concentrations. 
This increase implied a nonrecovering trajec-
tory that contained tipping points in the 
cellular system identified by the condition 
∂cV = 0. Based on our analysis, butachlor, 
oxadiazon, pioglitazone, farglitazar, trogli-
tazone, and thiram had critical concentra-
tions of 2.6  ±  0.5  μM, 17.6  ±  1.2  μM, 
28.4 ± 5.0 μM, 17.0 ± 2.4 μM, 4.5 ± 2.6 μM, 
and 69.1 ± 5.7 μM, respectively.

The resilience analysis of the HepG2 
system trajectories showed that roughly one-
third (334/967) of all chemicals produced 
recovery, another third (336/967) did 
not result in recovery, and the remainder 
(297/967) did not produce trajectories 
with substantial perturbations or sufficient 
confidence to place them in either category. 

Captan, mercuric chloride, and fluazinam are 
examples of chemicals that produced trajec-
tories with low confidence. Visual inspec-
tion of the trajectories for these chemicals 
showed complex concentration-dependent 
trends in ∂cV (Figure 4). Overall, 104 chemi-
cals produced complex trends in ∂cV, and a 
majority of these (71/104) produced trajec-
tories with low confidence. Complex trends 
in ∂cV could be indicative of noise and may 
require additional experimental data for 
improving confidence in the results.

We selected the 336 chemicals that 
elicited tipping points in the HepG2 system 
to compare critical concentrations with lowest 
effect concentrations (LECs), and the results 
are presented in Figure 5. Of the 336 chemi-
cals that produced tipping points, only 124 
had an LEC across any of the 10 end points at 
72 hr. On average, the Ccr was 13 times lower 
than the lowest LEC for 86% (106/124) of the 
chemicals, whereas the LEC was 6 times lower 
than the Ccr for 15% (18/124) of the chemi-
cals. In general, the Ccr was between 5 and 15 
times (25th and 75th percentiles, respectively) 
lower than the lowest LEC. The results of the 
resilience analyses for 967 chemicals, along with 
critical points, are given in Excel Table S3.

Discussion
From these results, we can conclude that HCI 
can be used to identify in vitro cellular tipping 
points in response to chemical-induced pertur-
bations. HCI has previously been used for 
screening to study the effects of chemicals on 
cellular systems (O’Brien et al. 2006; Abraham 
et al. 2008) and to profile molecular changes 
underlying cellular processes (Neumann 
et  al. 2010; Held et  al. 2010). Here, we 
analyzed time-course HCI data to investigate 
the dynamic response of HepG2 cells to 10 
concentrations of 967 chemicals. The time-
dependent perturbations of HepG2 cells were 
analyzed as state trajectories that described 
sequential perturbations in the system state 
as it adapted to chemical exposure. A novel 
computational approach was developed to 
analyze these trajectories by quantifying the 
dynamic response of the system across all 
chemical treatments. The quantity of the scalar 
perturbation was termed the “velocity” because 
it measured the rate at which the aggregate 
system state deviated from, or returned to, the 
normal state. We hypothesize that this velocity 
is a measure of system resilience and that it 
can be used to identify a dose-dependent 
transition in system recovery. We call this 
dose-dependent transition a “tipping point” 
and believe that it can be used as a point of 
departure in a high-throughput risk assessment 
context (Judson et al. 2011).

At the present time, toxicological tests are 
based on identifying apical adverse effects to 
define a point of departure for risk assessment. 

An adverse effect has been traditionally 
defined as a “biochemical, morphological or 
physiological change (in response to a stimulus) 
that either singly or in combination adversely 
affects the performance of the whole organism 
or reduces the organism’s ability to respond to 
an additional environmental challenge” (Lewis 
et al. 2002). Characterizing adverse effects using 
high-throughput assays is a key problem for 
toxicology in the 21st century (Keller et al. 
2012). HCI can measure adaptive cell stress 
responses, albeit in a cell-autonomous context 
(Simmons et al. 2009). An adaptive response 
is a homeostatic process that is activated by the 
system to survive in a new environment without 
impairment of function (Keller et al. 2012). 
We believe that our analysis of trajectories and 
tipping points brings us a step closer to real-
izing the vision of 21st century toxicology by 
providing a framework to identify where “transi-
tion points occur between adaptive changes and 
adverse effects” (Keller et al. 2012). However, 
implementing this vision will require much 
more work with regard to interpreting the role 
of cell-autonomous adaptive responses in the 
context of pathways that lead to in vivo adverse 
outcomes (Boekelheide and Andersen 2010).

Biological systems have evolved adaptive 
mechanisms that allow them to maintain a 
constant internal environment despite varia-
tions in external conditions (Kitano 2004). 
A number of homeostatic control systems 
compensate for chemical-induced perturba-
tions in cells. Cells possess diverse signaling 
pathways to sense state changes caused by 
reactive oxygen species (ROS), DNA adducts, 
protein denaturation, glutathione depletion, 
and other agents, and can activate feedback 
control processes, typically via genetic regula-
tory networks, to maintain their internal state 
(Simmons et al. 2009). As the concentration 
of a chemical rises and the intracellular state 
becomes increasingly perturbed, different 
feedback control mechanisms are incremen-
tally activated and, potentially, overwhelmed. 
The complexity of these interconnected 
processes could explain why we observed 
dose-dependent transitions in the recovery of 
HepG2 cells. Dose-dependent transitions have 
been described in the mechanisms of toxicity 
for a number of chemicals (Slikker et  al. 
2004), but such effects have not been studied 
systematically in in vitro systems. Zhang et al. 
(2008) proposed a control–theoretic approach 
to modeling the action of anti-stress genetic 
regulatory networks in maintaining cell state 
and to further explain the observation of dose-
dependent transitions in biological responses. 
Experimental evidence (Slikker et al. 2004), 
together with mathematical models (Zhang 
et al. 2008), supports the notion that there 
are dose-dependent transitions in some 
biological responses; however, identifying 
in vivo thresholds for toxicity is expected to 
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be multifactorial (time- and concentration-
dependent) and thus is extremely challenging.

Assessing the global state of a cellular 
system, which is defined by thousands of 
biological molecules, is a challenging problem; 
however, a relatively small number of 
pathways may be involved in responding to 
chemical-induced stress. A set of such stress-
response pathways proposed by Simmons 
et al. (2009) includes oxidative stress, heat 
shock response, DNA damage response, 
hypoxia, endoplasmic reticulum (ER) stress, 
metal stress, inflammation, and osmotic 
stress. Our study included a subset of these 

stress responses, but we also considered 
mitochondrial, cytoskeletal, and cell cycle 
changes, which are relevant measures of cell 
health. There is also increasing evidence for 
the occurrence of cross-talk between stress-
response pathways, which enhances the 
adaptive response of cells to environmental 
stressors (Simmons et al. 2009). Assuming 
a finite number of stress-response pathways, 
the amplification of stress responses by cross-
talk, and considering the sensitivity of HCI, 
we believe that our study reasonably assessed 
the adaptation of HepG2 cells to 967 chemi-
cals. In subsequent studies, we plan to extend 

our analysis to include additional stress-
response pathways.

It is important to note that our results 
may be limited by the small number of time 
points used in this study. Because our analysis 
combined HCI data from two independent 
experiments [ToxCast™ Phase I (Judson et al. 
2010) and Phase II], the 1-hr time point was 
only collected for a subset (308/967) of chem-
icals, primarily because of cost considerations, 
and our preliminary results indicated that the 
1-hr time point was helpful for visualizing 
trajectories but not essential to the analysis 
and conclusions. The analysis of tipping points 

Figure 4. Trajectory analysis and critical concentrations of different chemicals at 72 hr. The y-axis of each graph shows the scalar system perturbation 
(X = green), velocity (V = blue) and derivative of velocity with respect to concentration (∂cV = red), and uncertainty analysis of ∂cV (light red). The x-axis of each 
graph shows the treatment concentration of the chemical (μM). Dimethyl terephthalate, sodium L-ascorbate, octanoic acid, chlorpyrifos-methyl, fludioxonil, and 
tetramethrin produced trends in ∂cV consistent with system recovery. Butachlor, oxadiazon, pioglitazone, farglitazar, troglitazone, and thiram elicited trajectories 
with tipping points. Captan, mercuric chloride, and fluazinam produced complex trends in ∂cV that could be indicative of experimental noise.
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Figure 5. Critical concentrations (Ccr) for 340 chemicals at 72 hr. Chemicals are sorted by Ccr in descending order from top to bottom (y-axis), and each row 
shows the Ccr, the lowest effect concentration (LEC), the scalar perturbation (|X|), and the velocity (V). (A) Ccr s (μM) are indicated by points along the x-axis; the 
uncertainty is indicated by the gray line, the minimum LECs are green points, and select chemicals are labeled. (B) LEC (μM) across p53, SK (stress kinase), OS 
(oxidative stress), Mt (microtubules), MM (mitochondrial mass), mitochondrial membrane potential (MMP), mitotic arrest (MA), cell cycle arrest (CCA), nuclear 
size (NS), and cell number (CN). The LEC value is represented as no effect (pink), through saturation (red), as shown in the color bar on the right. (C) |X| as a 
heat map across concentrations (μM), where magnitude is represented by color saturation (values shown in color bar on the right). (D) V as a heat map across 
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is based on the complete set of observations 
for all 967 chemicals at 24 and 72 hr. We 
recognize that a more fine-grained temporal 
resolution or additional time points may 
produce different results. In particular, some 
chemicals that produced time-dependent 
results but did not display recovery at 72 hr 
may exhibit recovery at later time points. We 
hope to evaluate the impact of additional 
time points on the analysis of trajectories and 
tipping points in subsequent work.

Another potential limitation is the cell 
system used in this study. HepG2 cells are an 
immortalized cell line with characteristics that 
differ from those of normal hepatocytes. For 
example, these cells easily proliferate in culture 
but have limited metabolic activity compared 
with primary hepatocytes (Abraham et  al. 
2008; O’Brien et al. 2006). The HepG2 cell 
model used in this study was a two-dimensional 
monoculture that does not reflect the complex 
cell-to-cell interactions present in intact organs 
that have multiple cell types. Therefore, it is 
quite possible that the trajectories produced 
by chemicals in this cell-autonomous model 
will be different from those produced in more 
complex cell-based systems. However, we fully 
expect that the general categories of observa-
tions and the quantitative approach developed 
in the present study will be transferable to other 
cellular systems.

Tipping points for chemical-induced 
toxicity are not a new concept; however, 
defining them theoretically and identifying 
them experimentally are challenging. Chemical-
induced toxicity is believed to occur when 
adaptive pathways in biological systems are over-
whelmed, and it usually occurs when the stressor 
causes perturbations that are sufficiently large 
(Krewski et al. 2010). The idea that biological 
systems have a homeostatic capacity implies the 
existence of tipping points. If biological tipping 
points can be quantified for a chemical, they 
could be used to estimate levels of chemical 
exposure that overwhelm this homeostatic 
capacity. We believe that our approach for 
analyzing tipping points of cellular systems is an 
initial step toward quantifying in vitro regions 
of safety for chemicals. In combination with 
sophisticated methods for quantitative in vitro 
to in  vivo extrapolation (Wetmore 2015), 
cellular tipping points could be used as points of 
departure for high-throughput risk assessment. 
The real-world application of this method will 
require additional evaluation of our approach 
using more chemicals, cell-based models, time 
points, and end points.

Conclusions
Our findings demonstrate the potential utility 
of time-course high-throughput, high-content 
biological assays for elucidating cellular pheno-
typic behaviors invoked by chemicals and for 

identifying tipping points of cellular systems. 
The number of chemicals used in this study 
and the range of cellular end points measured 
suggest that this analytical approach can be 
used to provide valuable information about 
the effects of new chemicals and about critical 
concentrations at which cellular responses fail 
to return to control levels. Our findings also 
underscore the importance of considering the 
temporal evolution of biological systems as a 
means of resolving adaptive changes that either 
lead to recovery or progress to cellular injury.
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